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Learning by a population of perceptrons
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Learning by examples of a population of neural networks is studied in a statistical physics framework. A
population of single-layer perceptrons learns from a two-layer neural network. Each member is trained inde-
pendently either from the same or from different example sets. The outputs of multiple networks are combined
by majority vote. We calculate the generalization curve of the group decision of the perceptrons with both
discrete and continuous weights. We find an interesting nonmonotonic learning curve for the case of discrete
weights, indicating that majority vote shows optimal performance when the size of the example set is finite.
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PACS numbeps): 87.10+e, 05.50+q, 64.60.Cn

Recently, the process of combining multiple networks hasnonotonic learning curve that suggests that the ensemble
been used widely within the neural network community toapproach is particularly useful with a limited number of ex-
obtain an optimal generalization capabilfty—6]. Published amples.
studies fall into two classes. One is the “expert” approach, We first consider a situation of unrealizable learning by a
where the problem is divided into manageable sizes for sewopulation of perceptrons. A population of single-layer per-
eral subnetworkgexperts and each expert learns locally ceptrons is independently trained from examples presented
from a part of the problem domain. The outputs from theby a two-layer teacher network called a committee machine.
experts are combined using human expefftieor by inde- We consider cases where the training example set is either
pendently trained gating networks]. The other class is the the same, or different, for each perceptron.

“ensemble” approactfil] in which we generate an ensemble  An individual perceptronvoten maps the input vector

of networks independently trained for the whole problem andS=1{S;, - . . Sy} to the outputo as

the outputs of each network are combined with an appropri-

ate weighting. The main difference between the two ap-

proaches is that in the first instance each neural network o(W;9=g
manages the global problem domain, while in the second, it

is specialized for the local tasks.

1 N
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- . WwhereW is a set of the synaptic weights whose component
Whereas these approaches are gaining more popularity \?\li is a weight from thdth input node to the output node.

various applications, it is difficult to find theoretical studies We consider the transfer functia(x) = sgni)
that have analyzed their validity and performance. In this The examples are randomly gen_ergted .by a committee
paper we will address some fundamental issues mainly re- achine teacher witlN input nodes and hidden nodes.

lated to the ensemble approach through the statistical m h work inout Bit toUl O b
chanics formulatiorf7—11]. The key issues in the multiple € hetwork maps an input vectsrto an outpur given by

neural network approach are how the outputs of the various
subnetworks should be combined to give the best generali- 1

i ; —V;-S
zation performance and how to make the best use of a lim- N
ited data set. Perrone and Coop&f proposed a method for

calculating optimal weighting. factors for an en;emble Ofwheregl(x),gz(x) are transfer functions of the hidden nodes
neural networks. Wolpert devised a method to train a supersq the output node, respectively. We also consider thresh-

visor network to _give the weighting factof2]. _VV_e have 4 units gy(x) =g,(X) =sgn(). V; is a vector representa-
studied an analytically soluble model of the majority vote ofi ) tor the synaptic weights whose componarif is a
perceptrons learning dichotomy rules. This corresponds t eight from theith input node to thgth hidden node.

the “basic ensemble method,” described by Perrone and he energy of the system is defined as the difference be-

Cooper, where the Weightings of the n.etwqus are gqual. It iT\Neen the output of the teacher network and the output of
clearly not the best choice in a real situation, but it allowedy - hindividual perceptron

us to understand when the ensemble approach could be use-

ful and where the weak points existed. In this paper we will P

focus on the relation between generalization performance E=E e(W:S), 3
and the size of training sets. We find an interesting non- =1

M

o(V;9) =0, M‘l’? 9 : )
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E(W;g):@)(—g(v;g)g(w;s’)), (4) The average generalization error is given by

where@®(x) is the Heaviside step function aiis the num-
ber of training examples. Each component of the iruis &(T,P)= f du (9O (= a(V;og({W}:9)) :
randomly drawn from the Gaussian distribution with vari- T (10)
ance unity.

The stochastic learning algorithm, used for each percep- : e
tron, leads, after a long time, to a Gibbs distribution of theWhere {)r i1s the thermal average over the distribution

- P(W).
weights as For convenience, we divide the free energy into two parts,
P(W)=2"le BEW) (5) Gpy andG,,
where8=1/T is the inverse temperature and the normaliza- —BF=N(Gg+ aG,), (11

tion factorZ is the partition function,

wherea=P/N. Gy andG, are of the order unity. Note that
f du(W)e FEW), (6) P is the number of exampleg per student, not thel tota}I num-
ber of examples. When a different example set is given to
each student, the total number of examplesniB. In the

The prior distribution of weightslu.(W) contains appropri- thermodynamic limitN—o, the free energy can be written

ate constraints for weights. In this paper we consider botl} f . f | ord Th d
binary weights and continuous weights with spherical con?s @ unction of several order parameters. The order param-
eters are defined as

straints.
The free energy is given by 1
~ BF=((In2)) @ Rai=Wa Vi 12
where(( ))=[T1,du(S) denotes the quenched average over 1
possible example sets. We use the replica trick gp:NWg.Wg, (13
oy (21 .
((In >>_an0 n ' ® whereo,p are replica indices. The replica symmetric ansatz
is written as
which has already been applied successfully to the problems
of storage capacity and learning from examdi@s11]. R3;=T, (14
The performance of the network is measured by the gen-
eralization error. We cpnsider a majority vote rafpercep- IP=38,,+(1-3,,)0. (15)
trons{W,, ... W} voting for the answer
m We also assume that overlaps between the student and
WS)=s W,:S) |. 9 weights of the teacher connected to different hidden nodes
oq({W):S) gr(g 7(Wa )) © are equal. FoM>1, we have
|
—v2/mR q )
Gzzf Dt Hl ——t|In|1+(e P—1)H| \/——t ||, 16)
' Jo—(2/m)R? ( ) 1-q (
1. . 1. ——
509~ RR- §q+f Dt In[2 costivVg+R?)] (binary weighy
Go= q-R? 1| X _ _ 17
m + > n(l1—q) (continuous weight
|
whereR=\/Mr. 1
The generalization error depends upon both the generali- Cap=yWa Wo=C. (18

zation capability of individual perceptrons and the correla- o _ .
tion among them. To calculate the generalization perforWhenC<0O(1/m), the generalization error is written as
mance of the group decision, we need to introduce a new Jm

order parametelC,,, is defined as the overlap of tla¢h and €g= Earcco E mR

bth student perceptrons: T J1+(2/mw)(m-1)C

; (19
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FIG. 1. The dotted line shows the generalization curves of ma- FIG. 2. The dotted line shows the generalization curves of ma-

jority vote by a population of binary perceptrons trained with thejo.rity vote by a population of the binary perceptrons trained \.Nith
same example sets @t=5. For comparison, the dashed line depicts different example sets af=5. For comparison, the dashed line

the learning curve of a single perceptron. The dots show the result(:le}:)icltS the leaming curve of a single perceptron. The dots show the

esults of the Monte Carlo simulation, averaged over 10 indepen-

of the Monte Carlo simulation, averaged over 10 independent run I
whereN=M =m=51. 5ent runs wheré&=M=m=>51.

and forC>0O(1/m), .
(L/m) ent students. For smadl, the perceptrons have diverse con-

1 [2/7R figurations, and the group decision can show much better
€4=—arcco . (20 performance than a typical member of the population.cAs
Jc increases further, the order paramefeincreases, and the

perceptrons are located in or near the shrunken version
space. If they are too similar to each other, they cannot ex-
loit the advantage of the group decision. The group decision
Bses the advantage over an individual student, and the gen-
Bralization performance of the algorithm deteriorates. When
a approaches infinityC approaches one, and the generali-
zation error of the majority vote approaches that of a single
perceptron.
When they are trained from independently collected training With a motivation similar to that of the “expert” ap-
sets, we have proach, we consider the case where a different training set is
given to each perceptron. Comparing E21) and Eq.(22),
JDX we find that the correlatiorlC among the perceptrons is
C=
R2  for continuous weights.

The value ofC can be determined from the saddle point
equation of the free energy. We find that the overlap betwee
different perceptrons is the same as the overlap between t

replicas when the perceptrons are trained from the same e
ample set, that is,

C=q. (21

2
f Dy taniRx+/qy)| for binary weights

smaller when the perceptrons learn from different training
sets. Consequently, the generalization performance is better.
We needm times more examples, but this is not practical in
most cases. When the total number of examples is fixed, the
By substituting the values of the order parameters obsize of the training set available for each perceptronrisdff
tained from the saddle-point equations into E20), we get  all of the examples, and this can lead to poor performance.
the generalization errors for these two cases. The two result- The generalization errag of Eq. (19) is controlled by the
ing learning curves for the networks with binary weights areorder parameterR andC. It is small whenR is large and
plotted in Figs. 1 and 2, together with the learning curve of aC is small. When the number of examples is@fN), R is
single perceptron. too small to expect much improvement from the group deci-
Here we find an interesting nonmonotonic learning curvesion. Only when the total number of examples is of
The generalization error of the single perceptron decreaseéd(\/mN), the effect ofC dominates and we obtain better
monotonically as a function of. When the number of ex- results by dividing examples. Note that we have considered
amples is small, generalization performance of the group dehe casem> 1. It will be interesting to see how this picture
cision by majority vote is much better than that of a singlechanges whem is small.
perceptron. However, generalization error reaches a mini- It is desirable to analyze replica symmetry breaking
mum value at a certain value of and then increases again. (RSB) solutions for the study of unrealizable learning. In
When the number of examples approaches infinity, the gerig. 3, we plot the line where the entropy of the replica
eralization error converges to the same value as that of theymmetric(RS) solution vanishes. Below this line, the RS
single perceptron. This result can be interpreted as followssolution is no longer valid. Our one-step RSB calculation
When « is small, the generalization error is mainly con- shows that the one-step RSB solution takes over the RS so-
trolled by the order parametd®, which increases withx. lution below this line. All the thermodynamic quantities are
This order paramete€ measures similarity between differ- frozen below the transition line. The generalization error of

(22
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8 : . . . : We note that the group decision is less sensitive to the
temperature. As the weight space of the perceptron is spheri-
cally symmetric, the group decision usually reduces the ef-
fect of noise.

When each perceptron learns from a different example
set, the generalization error of the group decision decreases
RSB phase in the regime wherex~1/ym or the total number of ex-
amples isO(+mN). Again, we understand that it is not de-

4 sirable to divide the examples equally when the total number
of examples iO(N). Here« is O(1/m) and the generaliza-
tion error does not decrease in this region.
0 % o0 50 200 350 300 We have studied learning by a population of neural net-
o works and calculated the generalization performance of the
group decision by majority vote. For perceptrons with binary

FIG. 3. The phase diagram and the zero entropy line inathe weight, generalization error reaches a minimum at a certain
T plane. number of examples and increases again thereafter. Thus, the
performance of an ensemble approach is reduced when the
number of training examples is too large. A large training set

the RSB solution at a certain value @fis the same as that of restricts diversity of students and harms the generalization

the RS solution at the transition line. This scenario has beeRe"formance of the group decision. An education that is t0o
shown previously in studies of networks with binary weightsSt2ndardized sometimes ruins the creativity of students. The
[9,12]. However, the generalization error obtained from theStudy Of perceptrons with continuous weights also implies
RSB solution is numerically very close to that of the RSthat majority vote Is more usefgl W't.h small exa”!p'e Sets.
solution. At modestly high temperature, the optimal This result yields a useful direction for selecting an ap-

which gives the best generalization error, exists in the R roaqh .to T“U'“p'e heural networks.. In thg expert approach,
phase the similarity between the experts is not important because

In the replica symmetric phase, voting with equal Weight-?aCh expert is trained from local examples. When the train-

ing can be a good choice for combining multiple outputs of"d €xample size is small, however, each expert leams from
the voters. When replica symmetry is broken, however, th&Ven smaller examples and the ggnerahzaﬂon (_:apab|l|ty of
overlaps among the perceptrons have different values, arﬁa(.:h netvx:cork canrlo; beh fuIIy.ut|I|zed. IT( Iearncling of the
majority votes with equal weighting is not the optimal strat- mixture of experts” [5], the gating networks need a certain

egy. The algorithm of Perrone and Coofdil may be a minimum example size for effective partition of the input
usei‘ul solution in this situation space. The expert approach may be more useful, therefore,

We also considered the case of majority voting by percep\_/vhen a sufficient number of training examples are available,

trons with continuous weights. Although we did not observeWhereas the ef‘semb'e approach is strong With a limited _train—
g example size. It would be useful to derive an algorithm

the nonmonotonic learning curve, we again concluded that 4'

group decision is useful only when the sizes of the exampleg0 l_m'fy the two approaches. In addition, It would bE.’ Inter-
are relatively small. esting to compare the performance of various algorithms in

When the perceptrons learn an unrealizable task, the geffliS Situation of a two-layer network teacher with single-

eralization error converges to a nonzero Constant!ayer perceptron students. We expect that the theoretical is-

eo=(L/m)cos X(y2/m). When each perceptron learns from sues in more sophisticated algorithms such as the “mixture

the same example set, the asymptotic behavior is written at%f experts”[5] an_d the stacked generahz_aﬂor[?] may be
reated systematically with the same settings.

€,— €0=T/2a, whereas a single perceptron has asymptotics
€,— €o=T/a. This means that we need only half the ex- This work was partially supported by the Basic Science
amples to achieve the same performance when we use mubpecial Program of POSTECH and the Korea Ministry of
tiple networks. Wher is small, this can be a big advantage, Education through the POSTECH Basic Science Research
but it does not make much difference wheiis large and the Institute. It was also supported by “the non-directed fund”

RS phase

generalization error is close to the limiting valeg from the Korea Research Foundation.
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