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Learning by a population of perceptrons
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Learning by examples of a population of neural networks is studied in a statistical physics framework. A
population of single-layer perceptrons learns from a two-layer neural network. Each member is trained inde-
pendently either from the same or from different example sets. The outputs of multiple networks are combined
by majority vote. We calculate the generalization curve of the group decision of the perceptrons with both
discrete and continuous weights. We find an interesting nonmonotonic learning curve for the case of discrete
weights, indicating that majority vote shows optimal performance when the size of the example set is finite.
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Recently, the process of combining multiple networks h
been used widely within the neural network community
obtain an optimal generalization capability@1–6#. Published
studies fall into two classes. One is the ‘‘expert’’ approa
where the problem is divided into manageable sizes for s
eral subnetworks~experts! and each expert learns local
from a part of the problem domain. The outputs from t
experts are combined using human expertise@4# or by inde-
pendently trained gating networks@5#. The other class is the
‘‘ensemble’’ approach@1# in which we generate an ensemb
of networks independently trained for the whole problem a
the outputs of each network are combined with an appro
ate weighting. The main difference between the two
proaches is that in the first instance each neural netw
manages the global problem domain, while in the secon
is specialized for the local tasks.

Whereas these approaches are gaining more populari
various applications, it is difficult to find theoretical studi
that have analyzed their validity and performance. In t
paper we will address some fundamental issues mainly
lated to the ensemble approach through the statistical
chanics formulation@7–11#. The key issues in the multiple
neural network approach are how the outputs of the vari
subnetworks should be combined to give the best gene
zation performance and how to make the best use of a
ited data set. Perrone and Cooper@1# proposed a method fo
calculating optimal weighting factors for an ensemble
neural networks. Wolpert devised a method to train a sup
visor network to give the weighting factors@2#. We have
studied an analytically soluble model of the majority vote
perceptrons learning dichotomy rules. This corresponds
the ‘‘basic ensemble method,’’ described by Perrone a
Cooper, where the weightings of the networks are equal.
clearly not the best choice in a real situation, but it allow
us to understand when the ensemble approach could be
ful and where the weak points existed. In this paper we w
focus on the relation between generalization performa
and the size of training sets. We find an interesting n
551063-651X/97/55~3!/3257~5!/$10.00
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monotonic learning curve that suggests that the ensem
approach is particularly useful with a limited number of e
amples.

We first consider a situation of unrealizable learning by
population of perceptrons. A population of single-layer p
ceptrons is independently trained from examples prese
by a two-layer teacher network called a committee mach
We consider cases where the training example set is e
the same, or different, for each perceptron.

An individual perceptron~voter! maps the input vector
S5$Si , . . . ,SN% to the outputs as

s~W;S!5gS 1

AN(
i

N

WiSi D , ~1!

whereW is a set of the synaptic weights whose compon
Wi is a weight from thei th input node to the output node
We consider the transfer functiong(x)5sgn(x).

The examples are randomly generated by a commi
machine teacher withN input nodes andM hidden nodes.
The network maps an input vectorS to an outputs given by

s~V;S!5g2FM21/2(
j

M

g1S 1

AN
Vj•SD G , ~2!

whereg1(x),g2(x) are transfer functions of the hidden nod
and the output node, respectively. We also consider thre
old units g1(x)5g2(x)5sgn(x). Vj is a vector representa
tion for the synaptic weights whose componentVji is a
weight from thei th input node to thej th hidden node.

The energy of the system is defined as the difference
tween the output of the teacher network and the outpu
eachindividual perceptron,

E5(
l51

P

e~W;Sl !, ~3!
3257 © 1997 The American Physical Society
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e~W;Sl !5Q„2s~V;Sl !s~W;Sl !…, ~4!

whereQ(x) is the Heaviside step function andP is the num-
ber of training examples. Each component of the inputSi

l is
randomly drawn from the Gaussian distribution with va
ance unity.

The stochastic learning algorithm, used for each perc
tron, leads, after a long time, to a Gibbs distribution of t
weights as

P~W!5Z21e2bE~W!, ~5!

whereb51/T is the inverse temperature and the normali
tion factorZ is the partition function,

E dm~W!e2bE~W!. ~6!

The prior distribution of weightsdm(W) contains appropri-
ate constraints for weights. In this paper we consider b
binary weights and continuous weights with spherical c
straints.

The free energyF is given by

2bF5^^ lnZ&& ~7!

where^^ &&5*) ldm(Sl) denotes the quenched average o
possible example sets. We use the replica trick

^^ lnZ&&5 lim
n→0

^^Zn&&21

n
, ~8!

which has already been applied successfully to the probl
of storage capacity and learning from examples@8–11#.

The performance of the network is measured by the g
eralization error. We consider a majority vote ofm percep-
trons$W1 , . . . ,Wm% voting for the answer

sg~$W%;S!5sgnS (
a

m

s~Wa ;S!D . ~9!
ra
la
o
e

p-

-

th
-

r

s

n-

The average generalization error is given by

eg~T,P!5K K K E dm~S!Q„2s~V;S!sg~$W%;S!…L
T
L L ,
~10!

where ^&T is the thermal average over the distributio
P(W).

For convenience, we divide the free energy into two pa
G0 andGr ,

2bF5N~G01aGr !, ~11!

wherea5P/N. G0 andGr are of the order unity. Note tha
P is the number of examples per student, not the total nu
ber of examples. When a different example set is given
each student, the total number of examples ismP. In the
thermodynamic limit,N→`, the free energy can be writte
as a function of several order parameters. The order par
eters are defined as

Raj
s 5

1

N
Wa

s
•Vj , ~12!

qa
sr5

1

N
Wa

s
•Wa

r , ~13!

wheres,r are replica indices. The replica symmetric ans
is written as

Raj
s 5r , ~14!

qa
sr5dsr1~12dsr!q. ~15!

We also assume that overlaps between the student
weights of the teacher connected to different hidden no
are equal. ForM@1, we have
Gr52E Dt HS 2A2/pR
Aq2~2/p!R2

t D lnF11~e2b21!HSA q

12q
t D G , ~16!

G05H 1

2
qq̂2RR̂2

1

2
q̂1E Dt ln@2 cosh~Aq̂1R̂2t !# ~binary weight!

q2R2

2~12q!
1
1

2
ln~12q! ~continuous weight!,

~17!
whereR[AMr .
The generalization error depends upon both the gene

zation capability of individual perceptrons and the corre
tion among them. To calculate the generalization perf
mance of the group decision, we need to introduce a n
order parameter.Cab is defined as the overlap of theath and
bth student perceptrons:
li-
-
r-
w

Cab5
1

N
Wa•Wb5C. ~18!

WhenC<O(1/m), the generalization error is written as

eg5
1

p
arccosF 2p AmR

A11~2/p!~m21!C
G , ~19!
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and forC.O(1/m),

eg5
1

p
arccosS A2/pR

AC D . ~20!

The value ofC can be determined from the saddle po
equation of the free energy. We find that the overlap betw
different perceptrons is the same as the overlap between
replicas when the perceptrons are trained from the same
ample set, that is,

C5q. ~21!

When they are trained from independently collected train
sets, we have

C5H E DxF E Dy tanh~R̂x1Aqy!G2 for binary weights

R2 for continuous weights. ~22!

By substituting the values of the order parameters
tained from the saddle-point equations into Eq.~20!, we get
the generalization errors for these two cases. The two re
ing learning curves for the networks with binary weights a
plotted in Figs. 1 and 2, together with the learning curve o
single perceptron.

Here we find an interesting nonmonotonic learning cur
The generalization error of the single perceptron decrea
monotonically as a function ofa. When the number of ex
amples is small, generalization performance of the group
cision by majority vote is much better than that of a sing
perceptron. However, generalization error reaches a m
mum value at a certain value ofa, and then increases agai
When the number of examples approaches infinity, the g
eralization error converges to the same value as that of
single perceptron. This result can be interpreted as follo
When a is small, the generalization error is mainly co
trolled by the order parameterR, which increases witha.
This order parameterC measures similarity between diffe

FIG. 1. The dotted line shows the generalization curves of m
jority vote by a population of binary perceptrons trained with t
same example sets atT55. For comparison, the dashed line depic
the learning curve of a single perceptron. The dots show the re
of the Monte Carlo simulation, averaged over 10 independent r
whereN5M5m551.
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ent students. For smalla, the perceptrons have diverse co
figurations, and the group decision can show much be
performance than a typical member of the population. Asa
increases further, the order parameterC increases, and the
perceptrons are located in or near the shrunken ver
space. If they are too similar to each other, they cannot
ploit the advantage of the group decision. The group decis
loses the advantage over an individual student, and the
eralization performance of the algorithm deteriorates. Wh
a approaches infinity,C approaches one, and the genera
zation error of the majority vote approaches that of a sin
perceptron.

With a motivation similar to that of the ‘‘expert’’ ap-
proach, we consider the case where a different training s
given to each perceptron. Comparing Eq.~21! and Eq.~22!,
we find that the correlationC among the perceptrons i
smaller when the perceptrons learn from different train
sets. Consequently, the generalization performance is be
We needm times more examples, but this is not practical
most cases. When the total number of examples is fixed,
size of the training set available for each perceptron is 1/m of
all of the examples, and this can lead to poor performan

The generalization erroreg of Eq. ~19! is controlled by the
order parametersR andC. It is small whenR is large and
C is small. When the number of examples is ofO(N), R is
too small to expect much improvement from the group de
sion. Only when the total number of examples is
O(AmN), the effect ofC dominates and we obtain bette
results by dividing examples. Note that we have conside
the casem@1. It will be interesting to see how this pictur
changes whenm is small.

It is desirable to analyze replica symmetry breaki
~RSB! solutions for the study of unrealizable learning.
Fig. 3, we plot the line where the entropy of the repli
symmetric~RS! solution vanishes. Below this line, the R
solution is no longer valid. Our one-step RSB calculati
shows that the one-step RSB solution takes over the RS
lution below this line. All the thermodynamic quantities a
frozen below the transition line. The generalization error

-

lts
s

FIG. 2. The dotted line shows the generalization curves of m
jority vote by a population of the binary perceptrons trained w
different example sets atT55. For comparison, the dashed lin
depicts the learning curve of a single perceptron. The dots show
results of the Monte Carlo simulation, averaged over 10 indep
dent runs whereN5M5m551.
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the RSB solution at a certain value ofa is the same as that o
the RS solution at the transition line. This scenario has b
shown previously in studies of networks with binary weigh
@9,12#. However, the generalization error obtained from t
RSB solution is numerically very close to that of the R
solution. At modestly high temperature, the optimala,
which gives the best generalization error, exists in the
phase.

In the replica symmetric phase, voting with equal weig
ing can be a good choice for combining multiple outputs
the voters. When replica symmetry is broken, however,
overlaps among the perceptrons have different values,
majority votes with equal weighting is not the optimal stra
egy. The algorithm of Perrone and Cooper@1# may be a
useful solution in this situation.

We also considered the case of majority voting by perc
trons with continuous weights. Although we did not obser
the nonmonotonic learning curve, we again concluded th
group decision is useful only when the sizes of the examp
are relatively small.

When the perceptrons learn an unrealizable task, the
eralization error converges to a nonzero consta
e0[(1/p)cos21(A2/p). When each perceptron learns fro
the same example set, the asymptotic behavior is writte
eg2e0.T/2a, whereas a single perceptron has asympto
eg2e0.T/a. This means that we need only half the e
amples to achieve the same performance when we use
tiple networks. Whena is small, this can be a big advantag
but it does not make much difference whena is large and the
generalization error is close to the limiting valuee0.

FIG. 3. The phase diagram and the zero entropy line in thea-
T plane.
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We note that the group decision is less sensitive to
temperature. As the weight space of the perceptron is sph
cally symmetric, the group decision usually reduces the
fect of noise.

When each perceptron learns from a different exam
set, the generalization error of the group decision decrea
in the regime wherea;1/Am or the total number of ex-
amples isO(AmN). Again, we understand that it is not de
sirable to divide the examples equally when the total num
of examples isO(N). Herea is O(1/m) and the generaliza
tion error does not decrease in this region.

We have studied learning by a population of neural n
works and calculated the generalization performance of
group decision by majority vote. For perceptrons with bina
weight, generalization error reaches a minimum at a cer
number of examples and increases again thereafter. Thus
performance of an ensemble approach is reduced when
number of training examples is too large. A large training
restricts diversity of students and harms the generaliza
performance of the group decision. An education that is
standardized sometimes ruins the creativity of students.
study of perceptrons with continuous weights also impl
that majority vote is more useful with small example sets

This result yields a useful direction for selecting an a
proach to multiple neural networks. In the expert approa
the similarity between the experts is not important beca
each expert is trained from local examples. When the tra
ing example size is small, however, each expert learns f
even smaller examples and the generalization capability
each network cannot be fully utilized. In learning of th
‘‘mixture of experts’’ @5#, the gating networks need a certa
minimum example size for effective partition of the inp
space. The expert approach may be more useful, there
when a sufficient number of training examples are availab
whereas the ensemble approach is strong with a limited tr
ing example size. It would be useful to derive an algorith
to unify the two approaches. In addition, it would be inte
esting to compare the performance of various algorithms
this situation of a two-layer network teacher with singl
layer perceptron students. We expect that the theoretica
sues in more sophisticated algorithms such as the ‘‘mixt
of experts’’ @5# and the ‘‘stacked generalization’’@2# may be
treated systematically with the same settings.
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Special Program of POSTECH and the Korea Ministry
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